

NEW BUILDING MATERIALS FROM END-OF-LIFE CLOTHES

RECYBUILDMAT

UPCYCLING FIBERS FROM END-OF-LIFE CLOTHES & TEXTILE REMNANTS FOR SUSTAINABLE BUILDING MATERIALS: CLOSING THE LOOP FOR A CIRCULAR ECONOMY

ITMF Sustainability & Innovation Award 2023 Monday, November 6

CONTEXT

Textile sector

35-92 million tons of global production of textile waste

Challenging recycling of endof-life textiles

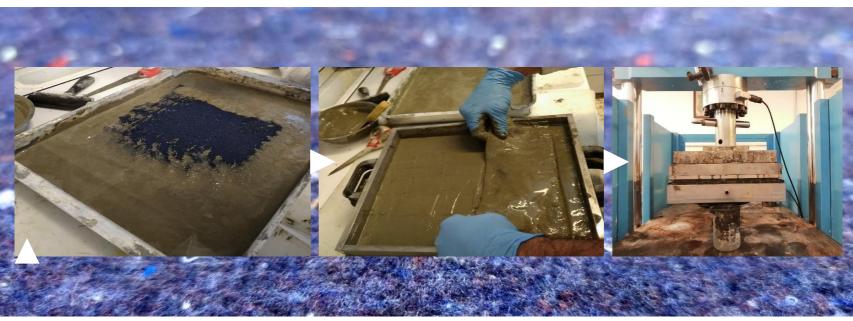
Building sector

1/3 of the CO₂ emissions

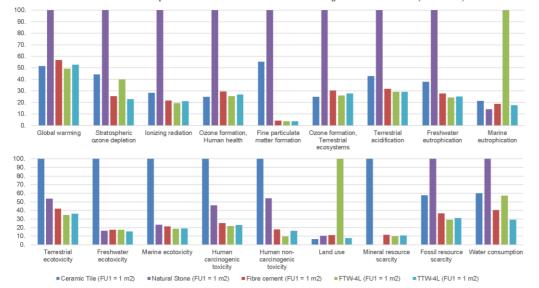
7% of the total worldwide CO_2 emissions correspond to the cement industry

S

OBJECTIVE


Develop **new sustainable building materials** with a high content of **recycled raw material** from **post-consumer recovered fibres** that, applied in *panels for ventilated facades*, *pavements* and *plates for masonry reinforcement*, will contribute to **improving buildings' energy efficiency** and to **reduce the emissions** generated by both the textile and construction sectors.

ITMF Sustainability & Innovation Award 2023 Monday, November 6


FLEXURAL STRENGTH ▲190% HIGH THOUGHNESS DENSITY ▼16% FIRE RESISTANCE >950°C THERMAL AND ACOUSTIC INSULATION ▲40%

Environmental impact relative values. Traditional and engineered materials. (FU =1 m²)

Environmental impacts for production of 1 m^2 of:

CERAMIC TILE NATURAL STONE FIBROCEMENT OUR SOLUTIONS

H Vientura, M.D. Ávaraz, L. Gonzalez-Lopez, J. Claramuri, M. Ardanuy, Cellentr ComPosite PLATES REINFORCED WITH NONWORN FABRICS FROM TECHNICAL TEXTILE WASTE Fillers: MECHANICAL AND ENVIRONMENTAL ASSESSMENT, Journal of Cleaner Production, 372 (2022) 133652. doi: https://doi.org/10.1016/j.jelper.0222.133652

C

FAÇADE PLATES

Portland Cement Binder

low weight, impermeability to water, thermal insulation, dimensional stability to thermalhygrometric variations, high strength and ductility, and good durability

2

PAVEMENTS

Portland Cement Binder

with water impermeability, dimensional stability to thermo-hygrometric variations, good resistance to wear, nonslip, high strength and ductility, impact resistance, and durability

MASONRY STRENGTHENING

Lime Binder

optimized with a special focus on the tensile strength, and the bonding with the masonry element for in situ placement and for bonding systems

On behalf of the RECYBUILDMAT team... THANK YOU!

Full professor

Material science

Chemistry

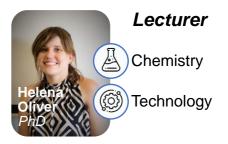
Textile engineering

Associate professor

DE CATALUNYA RABCELONATECH

TECTEX for

Construction engineering



SH lecturer

Material science

Textile engineering

Industrial design

ACKNOWLEDGEMENTS

Funding of the research project:

UPCYCLING FIBERS FROM END-OF-LIFE CLOTHES & TEXTILE REMNANTS FOR SUSTAINABLE BUILDING MATERIALS: CLOSING THE LOOP FOR A CIRCULAR ECONOMY (RECYBUILDMAT)

PID2019-108067RB-I00MICIN/AEI/10.13039/501100011033 granted by Government of Spain, Ministerio de Ciencia e Innovación (MCIN), and Agencia Estatal de Investigación (AEI)

Funding of the research group:

TECTEX RESEARCH GROUP - CONSOLIDATED RESEARCH GROUP

2021 SGR 01056 funding by **Departament de Recerca i Universitats de la Generalitat de Catalunya**