

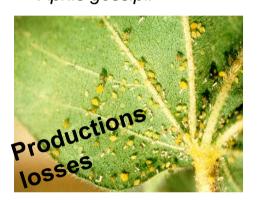
ciral Agenda of the ICCTM-Stickiness TF 2018

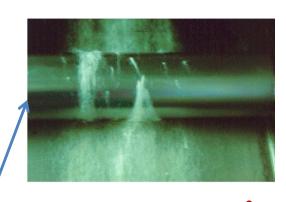
- Introduction
 - HarCoStiC
 - RTStick: results and future
 - Comparison of results
- The effect of ETO fumigation on stickiness. René van der Sluijs
- Contest-Fibermap: Contest-Fibermap: the first year of field testing on stickiness detection. Gabrielle Salvinelli
- Embrapa: Developing a Portable Device Using NIR Image for Easy Detection of Stickiness in Cotton. Liv Severino
- KOTITI: Announcement
- Prodev: Announcement
- CIRAD: Announcement
- Conclusion

ITMF-ICCTM Stickiness task force

Results of the 2017 international round-test of stickiness measuring methods

<u>Jean-Paul Gourlot</u>, Serge Lassus, Axel Drieling, Karsten Froese Bremen, March 2018

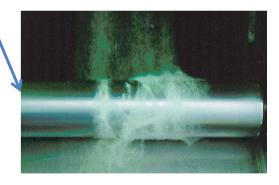




Stickiness in spinning mill due to entomological sugars

These sugars or honeydew are mainly produced by *Aphis* and *Bemisia, ...* but new insects are coming (mealybug, ..., due to resistance, GMO...)

Aphis gossipii Honeydew on open boll


Bemisia tabaci

Honeydew in fibers

Problems Productivity, quality

=> Need for reliable characterization (method, <u>reference material</u>, predictive of problems in spinning...)

Mandates

Two of the mandates of the ICCTM are:

[.../...] "to harmonize cotton testing results by means of:

- a. proposition and support for the international standardization of test methods
- b. development of guidelines for testing
- c. technical evaluations using world-wide round tests.

and to discuss the problems related to testing of cotton fiber properties and their relations to cotton processing." [.../...]

Objectives of ICCTM: past results (1/3)

Reminder

- To check the ability of each measuring technique to reproduce itself within a same single laboratory
- To check the ability of each measuring technique to reproduce itself between several laboratories
- To give some indications about the ability of various measuring techniques to correlate to each others

One RT conducted in 2013-2014

- =>report 2014 and 2016 (instruments vs micro-spinning)
- → need harmonization
- → need creation of reference materials

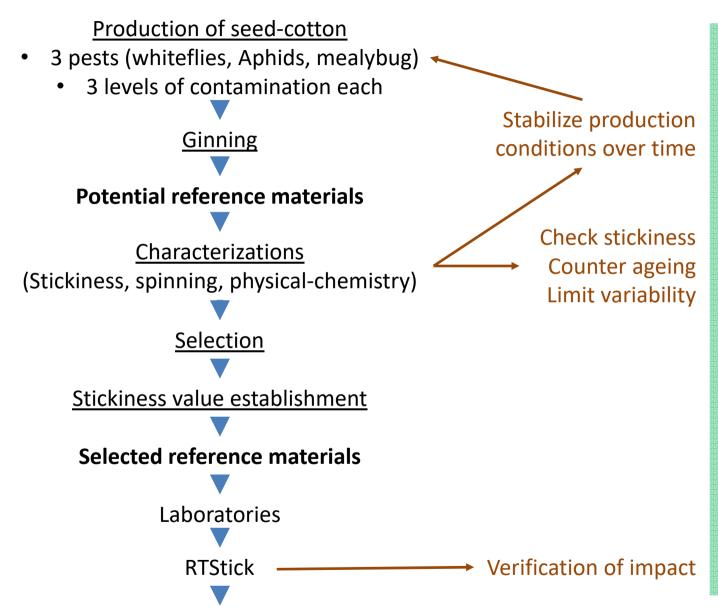
Objectives of ICCTM: past results (2/3)

- To check the ability of each measuring technique to reproduce itself within a same single laboratory
- To check the ability of each measuring technique to reproduce itself between several laboratories
- To give some indications about the ability of various measuring techniques to correlate to each others

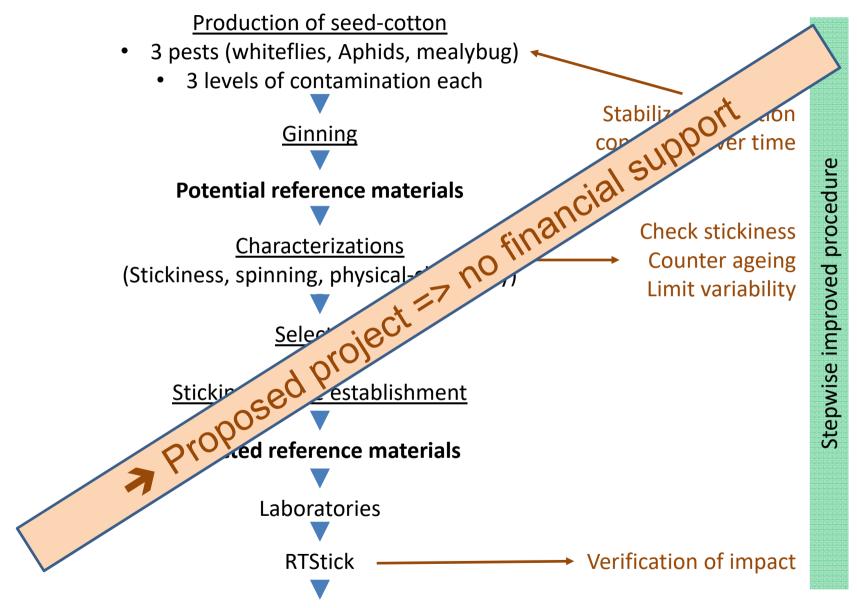
One RT conducted in 2013-2014 =>report 2014 and 2016 (instruments vs micro-spinning)

- → need harmonization
- → need creation of reference materials
- proposed project

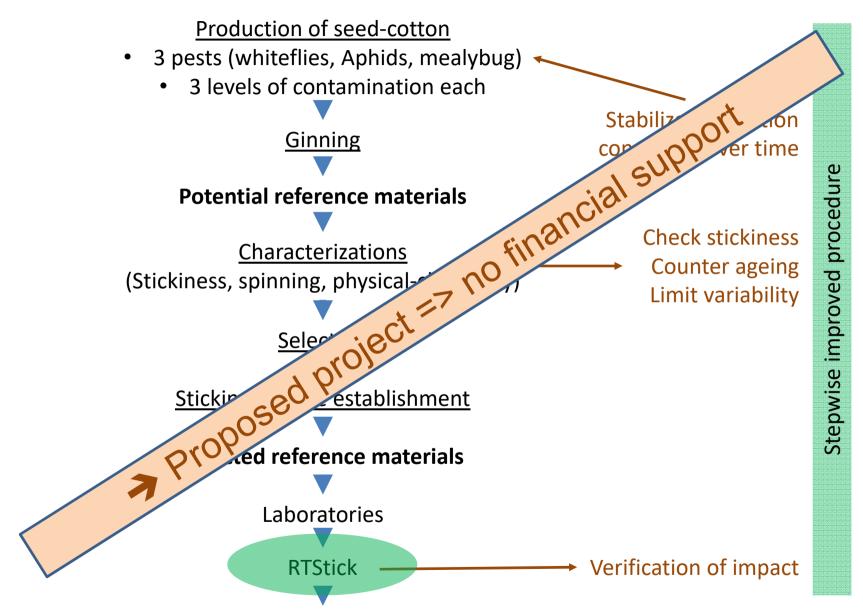
Reminder


Production of seed-cotton 3 pests (whiteflies, Aphids, mealybug) 3 levels of contamination each Ginning Potential reference materials Stabilize production conditions over time

<u>Characterizations</u> (Stickiness, spinning, physical-chemistry) Check stickiness


Counter ageing

Limit variability



Periodic international inter-laboratories round-tests on stickiness

- One RTStick initiated in 2017
 - Planned for 2 times / year
 - Possibility of having up to 6 measurements / cotton
 - Anonym participation (one LabID / test)
 - 2017-1 and 2017-2 conducted
- Organized and funded by CIRAD, BBB and FIBRE
- Methods
 - No micro-spinning
 - Used in laboratories
- Three cottons (various origins) per test covering a range

Periodic international inter-laboratories round-tests

- Please fill-in the following information table:

Item / question	Answers			
Lab name / company (will stay confidential)				
Lab code number				
Name of the Person in charge				
Name of the Technician in charge of the tests				
Date of the tests (DD/MM/YYYY)				
Temperature of the lab when testing	Temperature of the lab when testing			
Relative humidity in the lab when testing		%		
Duration of the sample conditioning prior testing (hours)		hours		
Name of the testing technique				
Identification of the instrument (necessary at least in case of more than one instrument participating)				
Unit used for reporting results in the following table (sticky points, grade, percent, or else)				
If else, please explain the scale used				

Periodic international inter-laboratories round-tests

- Please fill-in this table with your results:

Sample	Sample A	Sample B	Sample C
Result 1			
Result 2			
Result 3			
Result 4			
Result 5			
Result 6			
Comment for sample			

Participation in 2 RTs

Methods	RT 2017-1	RT 2017-2*	RT 2018-1
Benedict	1	0	
Caramelization	4	4	
Clinitest	1	1	
Contest	3	3	
Fibermap	2	2	
H2SD	4	3	New labs welcomed
KOTITI	1	1	
Minicard	4	4	
Quantitative meth.	1	1	
Reactive spray/heat	1	1	
SCT	13	11	
GB/T13785-1992	(1)	1	
Total	35(+1)	32*	(40)

^{*:} Interim counting due to late delivery of samples in laboratories.

Report format

Introduction	3
Confidentiality and use of information from this report	3
Preparation of cottons and samples	3
Organization of this report	4
Conversion of 'laboratories raw records' into numeric data for use in this report	5
All results per Method and LabID for cottons A, B and C	7
All results for cotton A	7
All results for cotton B	9
All results for cotton C	10
Statistics per Method, LabID for cottons A, B and C	11
Means, variances, CV%, Grand Mean and Delta per Method and LabID for cotton A	11
Means, variances, CV%, Grand Mean and Delta per Method and LabID for cotton B	13
Means, variances, CV%, Grand Mean and Delta per Method and LabID for cotton C	14
Data presented by boxplots per Method, LabID for cottons A, B and C	15
Boxplots per Method and LabID for cotton A	15
Boxplots per Method and LabID for cotton B	26
Boxplots per Method and LabID for cotton C	37
Charts of individual readings per Method and LabID for cottons A, B and C	48
Correlation charts and correlation values between LabID using a same Method for for	
cottons A, B and C	59
Charts Variance = f(Mean) for each Cotton and Method, taking care of LabIDs	65
For Cotton A	65
For Cotton B	76
For Cotton C	87
CSITC type charts: distance of LabID readings to the Grand Mean by Method, and by	
LabID	98

16

Check 1

Sticky Cottons in RTs

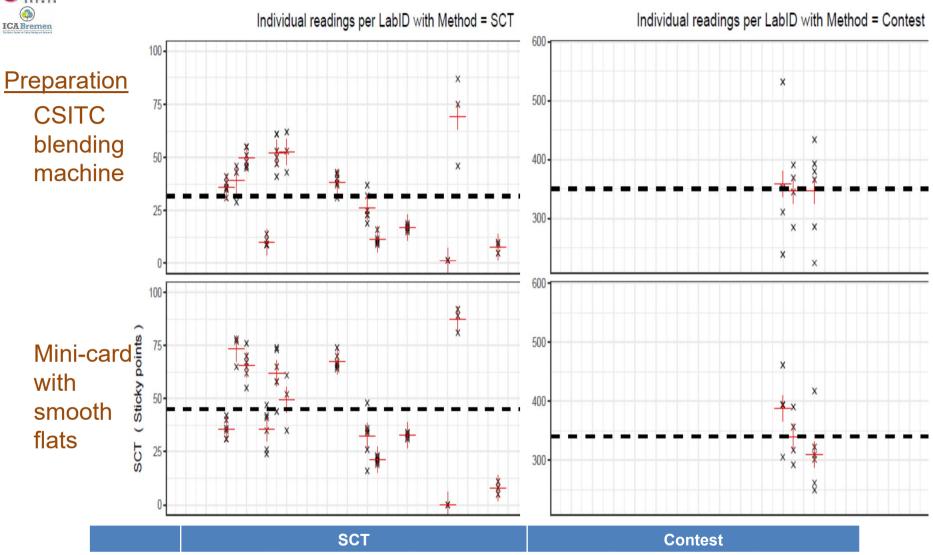
• RT 2017-1:

A (blended using CSITC blending machine)

B (same cotton as A, blended using mini-card with smooth flats)

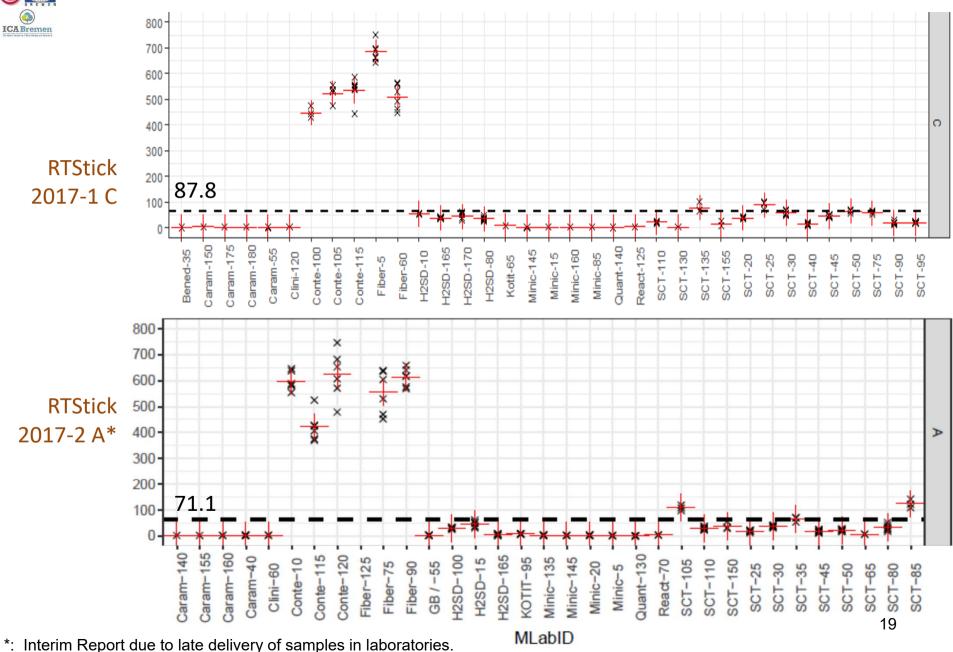
C (blended using CSITC blending machine)

• RT_2017-2:


A, B, C, blended using CSITC blending machine

Check 2 - A = C of 2017-1

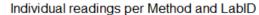
- RT_2018-x:
 - 10 kg/cotton required,
 - call for anonym provision of sticky cottons for feeding RTs

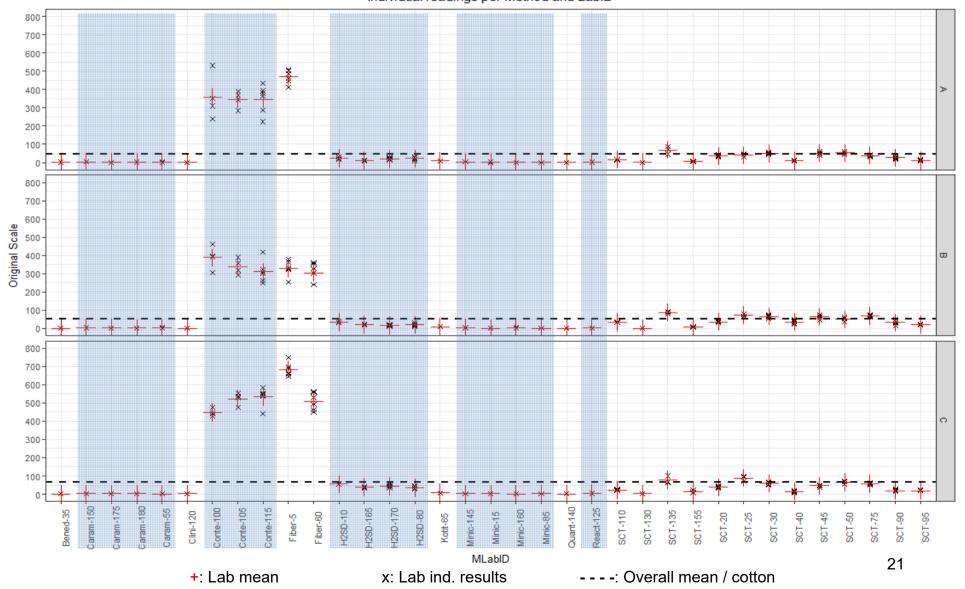

Check 1: effect of preparation

	SCT		Contest			
Cotton	Mean	Mean SDs	CV%	Mean	Mean SDs	CV%
Α	32	5.8	18	350	82.6	24
В	45	6.0	13	340	55.6	16

Cirado WARMANA ASSANSTITUTO BREMEN FIBRE ICA Bremen

Check 2: one cotton in 2 RTStick




Units and scales for stickiness results

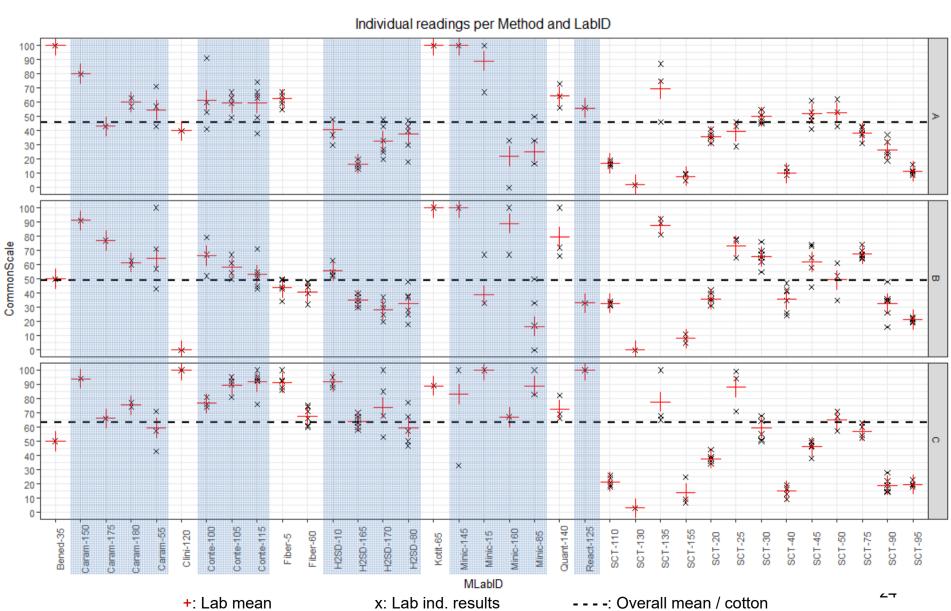
Methods	Unit	Scale RT 2017-1
Benedict Caramelization Clinitest Contest Fibermap H2SD Kotiti Minicard Quantitative meth. Reactive spray/heat SCT	grade +b +b grade grade grade points grade ITMF grade % grade points	0 - 2 0 - 3.5 0 - 2.5 0 - 585 0 - 750 0 - 60 0 - 9 0 - 3 0 - 1.2 0 - 4.5 0 - 100

Units and scales for stickiness results RTStick 2017-1

Units and scales Could we express results in a common scale?

What for?

- Compare methods
 - Sensitivity, Resolution, Precision, Accuracy,
 - Reproducibility
 - Repeatability
- Improve
 - Correlation within and between methods


Units and scales Example: xMax / RT 2017-1

Method	Result	xMax test	CommonScale
Minicard (grades)	3	3	100
	2		67
	1		33
	0		0
SCT (nb sticky points)	100	100	100
	66		66
	63		63
	0		0
A (any unit)	555	600	93
	200		33
	190		32
	0		0

Rounded(100*Result/xMax;0)

ciral 'Common' scale for stickiness measurements? Application xMax to RTStick 2017-1

cirad 'Common' scale for stickiness measurements? Example: xMaxEver

Method	Result	xMaxEver	CommonScale
Minicard (grades)	3	3	100
	2		67
	1		33
	0		0
SCT (nb sticky points)	100	100 => 200	50
	66		33
	63		32
	0		0
A (any unit)	555	600 => 1000	55
	200		20
	190		19
	0		0

Rounded(100*Result/xMaxEver;0)

Units and scales Could we express results in a common scale?

Interesting and usefull only if <u>really</u> the same indicator is measured

⇒ Stickiness or any indicator proven closely related to stickiness

"the propensity of fibers to stick to spinning parts during their processing"

=> Any method subject to recognition should demonstrate that point

Subject to discussion...

Additional notes: respect of testing conditions

 Minicard test should be performed at 55%RH according to 1988 ICCTM proceedings, page 12:

Other methods: Subject to discussion...

d cirad Estimated costs of each RTStick occurrence

Organization

5 days
Stock management
?

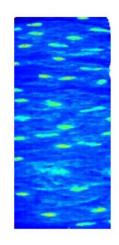
Cotton selection and preparation

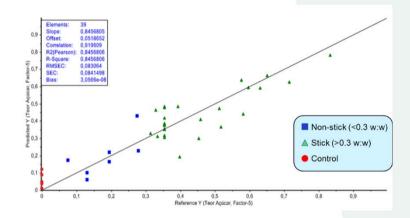
500 € / kg, 3 cottons * 5 kg
Expedition
20 € / lab, 35 labs =>
Data analysis and report preparation
5 days

18000 €

Organization of future RTStick? Subject to discussion...

Next on the agenda


- The effect of ETO fumigation on stickiness
 René van der Sluijs
- Contest-Fibermap: The first year of field testing on stickiness detection
 Gabrielle Salvinelli
- Embrapa: Developing a Portable Device Using NIR Image for Easy Detection of Stickiness in Cotton Liv Severino
- KOTITI
- Prodev
- CIRAD
- And a surprise ...



Using NIR Image for Detection of Stickiness in Cotton

Cotton samples: sugar spots are invisible

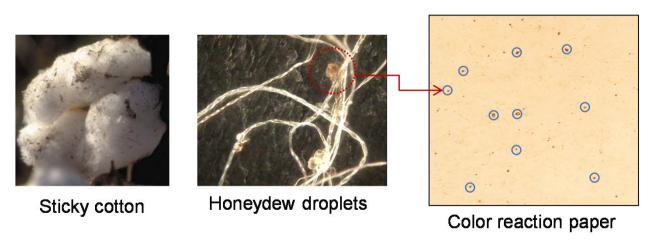
High resolution image acquired in NIR-HYS

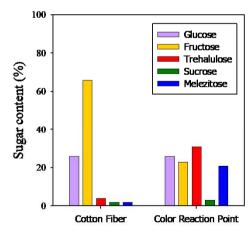
After filtering sugar spots become visible

Sugar content is estimated in a cheap, fast, reliable and non-destructive method.

This method is under development. The proof of concept was successful and test are initiating in a textile industry.

More information:
liv.severino@embrapa.br
everaldo.medeiros@embrapa.br
Brazil


Full presentation: Session IX (Friday, 9-11:30, Room 506)


Introduction

ISO 12027:2012 Textiles—Cotton-fibre Stickiness

Detection of sugar by color reaction

- New ISO standard visualizes the honeydew droplets in cotton and evaluates the degree of honeydew contamination.
- Honeydew droplets that may occur in a specific cotton web with its fixed surface area and mass are transferred to color reaction paper by applying pressure.
- The transferred honeydew is developed on the color reaction paper by using forced convection oven at 120°C for 5min.
 - → According to HPLC results of color reaction points, trehalulose and melezitose could be detected.
- The field test on this new test method was done and the results showed very good relationship with actual stickiness behavior

Test procedure

■ STEP 1

Preparation

STEP 2

Color reaction

- (1) contacting sample web with color reaction paper
- (2) Development of color reaction paper

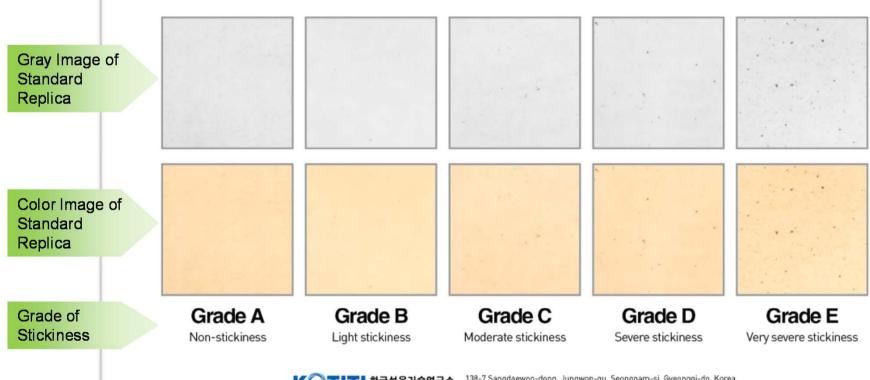
STEP 3

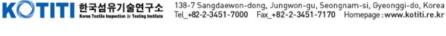
Grading of cotton stickiness

- Preparation of sample web
- A web (10×10cm) is prepared after impurities are removed by using the instruments such as MDTA 3.
- Preparation of color reaction paper
- By wetting paper having a certain degree of pore size with a solution for color reaction
- Transfer of honeydew from sample web to color reaction paper by contacting together
 - Pressing condition

```
\triangleright weight: 4 \text{ kg} / (10 \times 10 \text{ cm}), time: 1 \text{ min}
```

- Development of color
 (by using instrument such as forced convection oven)
 - Development condition of color reaction paper
 ▶ 120 °C× 5 min
- Grading by comparing with standard replicas under visual evaluation
- Grading by image analysis program




Visual assessment using cotton fibre stickiness replicas

 Stickiness grade is evaluated by comparing the appearance of the developed brown spots(honeydew reaction) with a series of five visual replicas

ISO 12027 Textiles—Cotton-fibre Stickiness—Detection of sugar by color reaction

COTTON FIBRE STICKINESS REPLICAS

Announcements

Manufacture of SCT and of H2SD by

Prodev System

Zac de la Louvade

221 rue des Aramons

34130 Mauguio

France

Email: contact@prodev-system.fr

Tel: +33 (0)4 67 12 12 42

Fax: +33 (0)4 34 43 72 00

Announcements

Cirad

- Produces a small quantity of reference materials for calibrating SCT and H2SD
- Can check SCT instruments using a 30 years old 'standard' routine

Email: serge.lassus@cirad.fr

technologie.coton@cirad.fr

coton@cirad.fr

And... what is the surprise?

Stickiness...* Also look into your instrument!

After 1 800 combs (300 samples * 6 meas.)

After 1 620 combs (270 samples * 6 meas.)

38

Stickiness...* Also look into your instrument!

Cleaning at the beginning

After 480 combs

After 960 combs

After 1440 combs

^{*:} Experimentation results with intentional use of sticky to very sticky cottons

Discussion conclusion ICCTM-Stickiness TF 2018

- RTStick 2017: Conclusions: similar to RT2013-14
 - Still remain differences between labs within each method
 - Still remain large differences between methods
- RTStick: Organizational matters
 - Sample dispatch has been problematic
 - Feeding the RT with cotton: call for proposals
 - RTStick will continue
- Proposal of a method to compare results
- Proposal of HarCoStiC* project

Reference materials + a common scale + RT Stick = basis of harmonized measurements

- Progress report for Contest and Fibermap
- NIR technology in Embrapa
- Prodev continues producing SCT and H2SD
- Production of some reference materials / check of SCTs